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Quantification of cancellous bone structure using symbolic dynamics and measures of complexit
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In this study we generalize symbolic dynamics to analyze two-dimensional objects and utilize measures of
complexity to quantify the structure of symbol-encoded images. This technique is applied to study quantita-
tively the structure of human cancellous bone by analyzing computed tomography images. First, the prepro-
cessed images are transformed into symbols, applying a mixture of static and dynamic encoding. Next, the
spatial distribution of cancellous bone is evaluated using measures of complexity. New parameters are intro-
duced to quantify the cancellous bone architecture as a whole. The results exhibit that the complexity of the
structure declines more rapidly than density during the loss of bone in osteoporosis, strongly suggesting an
exponential relationship between bone mass and architecture. It is found that normal bone has complex ordered
structure, while the structure during the initial stage of bone loss is characterized by lower complexity and a
significantly higher level of disorder, which is maximal there. A strong grade of the bone loss leads again to
ordered structure, however its complexity is minimal. In addition, this method is significantly sensitive to
changes in structure of natural composite materials.@S1063-651X~98!08911-9#

PACS number~s!: 87.59.Fm, 05.45.1b, 07.05.Pj, 87.59.Ls
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I. INTRODUCTION

During the past decade the concepts of symbolic dyn
ics @1,2# and measures of complexity@3–7# have been suc
cessfully utilized to analyze models and experimental d
from different areas of science such as astrophysics@8#, geo-
physics @9#, stochastic systems@10#, and medicine@11#.
Originally, symbolic dynamics was developed to work wi
multivariate but one-dimensional time series. The dram
cally increased quality of imaging and the number of ima
ing applications in different fields of science require a to
for the analysis and quantification of planar@two-
dimensional~2D!# and spatial~3D! architecture, its spatia
dynamics, and complexity.

In the present paper we generalize the notion of symb
dynamics@1,5,2,12# in order to analyze two-dimensional im
ages, develop a two-dimensional procedure of transforma
into symbols, and utilize measures of complex
@11,13,14,5# to assess the composition of symbols with
these images. The proposed technique is applied to qua
the architecture and structural properties of biological co
posite materials.

Since in any object mass and structure depend on e
other to build a functional form@15#, methodologies to mea
sure structural information are needed to understand the
tribution of structure to support the form and to quantify t
spatial architecture, its changes, and the loss of object in
rity. Bone tissue is a paradigmatic example of a highly co
plex structural entity@15#. Bone integrity is maintained by
intertwined attributes such as strength, mass, and struc
@16,17#. These intrinsic factors define the fracture risk
human bones in metabolic bone diseases. Loss of the b
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leads to osteopenia~weak grade! and osteoporosis~strong
grade of the disease!. Osteoporosis is defined as a disea
characterized by low bone mass and microarchitectural d
rioration of bone tissue, leading to an increase of fract
risk @18#. Osteopenia is world-wide the most often foun
bone disease and is prevalent in about 54% of postme
pausal white women in the United States@19#. According to
the World Health Organization definition, 16% of all whit
women in the U.S. age 50 years or above suffer from fr
tures caused by osteoporosis@19#. The estimated cost of os
teoporotic fractures was 13.8 billion dollars in 1995@20#.
The financial and health-related costs of osteoporosis
only rise in future generations in every geographic regi
This gives the reason for the assumption that osteopor
will truly become a global problem over the next ha
century@21# and that measures are urgently required to av
this trend.

Osteoporosis is diagnosed by medical physical exam
tion, x-ray evaluation of the spine and other bones, and
measurement of bone mineral density. Bone mineral den
~BMD! measurements@22,23# are used to measure bon
mass noninvasively and serve as a surrogate to estimate
fracture risk@23#. Note, however, the knowledge of a low
bone density offers no information about the structure
maining within the volume of the bone. Bone volume is d
termined by soft tissue marrow occupying the space betw
hard bone structural elements~trabeculae!, which define the
composition of bone architecture. This means the knowle
of the distribution of mass within the volume is imperative
assess bone integrity and fracture risk@24,25#. Density mea-
surements provide only information about the amount of m
terial, omitting its architecture. Present approaches to as
bone structure are either invasive and evaluate only pa
aspects of the bone structure@26–28#, or, when noninvasive,
apply techniques such as fractal@29#, texture@30#, and pat-
6449 © 1998 The American Physical Society
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tern analysis@31,32# resulting in discriminatory measure
ments with low sensitivity@32#, or only profiles of bone sec
tions @31#, or assess only projected surface patterns@29,30#.

We are applying symbolic dynamics and measures
complexity as a new noninvasive approach to assess ca
lous bone structure in its complex spatial distribution for t
quantification of the architecture as a whole. Techniques
2D symbolic dynamics and measures of complexity are e
ployed to identify structural changes in human cancello
bone of vertebral bodies from preprocessed images obta
by computed tomography~CT! which are, crucially impor-
tant, symbol-encoded by both static and dynamical
proaches.

The results lead to new insights into bone’s internal str
ture and provide improvements in differentiation of stru
tural loss. We have found that normal bone has a comp
ordered structure, while the structure during the initial sta
of bone loss is characterized by lower complexity and a s
nificantly higher level of disorder. Strong grade of the bo
loss leads again to ordered structure, however its comple
is minimal. The complexity of the structure declines mo
rapidly than density during the loss of bone leading to
teoporosis, strongly suggesting an exponential relations
between bone mass and architecture.

The data are described in Sec. II. Section III presents
preprocessing algorithms we developed to segment the
tebral body from the connective and soft tissue backgro
present in a CT image, and to split the entire vertebra into
cancellous bone and the cortical shell. Our generalizatio
symbolic dynamics to work with 2D images, the encodi
procedure, and the set of measures to assess global and
architecture and structural properties of symbol-encoded
ages are introduced and their usefulness and reliability
discussed in Sec. IV. The results are summarized in Sec

II. DATA

The data, axial slices of 1 mm and 10 mm thickness, w
acquired from nonfractured human lumbar vertebrae
specimens using a CT scanner Somatom Plus S~Siemens
AG! @Fig. 1~a!#. 50 fresh lumbar vertebrae L3 harvested fro
human cadavers were frozen to280 °C and the vertebra
arch was cut off of each vertebra at the level of the spi
canal at the beginning of the pedicels. After thawing, ver
bral bodies were examined by high-resolution computed
mography~HRCT! and quantitative computed tomograph
~QCT! applying an image matrix of 5123512 pixels. HRCT
was performed transaxially applying 1 mm slice thickne
and an in-plane pixel resolution of 0.18230.182 mm. De-
pending on the size of the vertebrae, continuous 28 to
slices were obtained. A transaxial center slice of 10 m
thickness, in-plane resolution 0.32330.323 mm, was ob-
tained and in conjunction with a calibration phantom p
vided an evaluation of the bone mineral density. The BM
of the specimens ranged from 21 to 122 mg/cm3. For normal
specimens BMD was defined as being above 100 mg/cm3 ~10
specimens!, for osteopenic between 80 and 100 mg/cm3 ~14
specimens!, and for osteoporotic below 80 mg/cm3 ~26 speci-
mens!. 21 specimens were from females~mean age 71
years!, 29 from males~mean age 67 years!.
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III. IMAGE PREPROCESSING

Before the evaluation of structural properties, the reg
of interest must be separated from the rest of the CT ima
Our image preprocessing technique consists of two steps~i!
the vertebral bodies are segmented from the connective
soft tissue background, and then~ii ! the entire vertebrae ar
split into their cortical and cancellous parts. In contrast
standard algorithms@33#, which are based on geometric
size of the vertebra and are orientation dependent, we
pose orientation and size independent methods based o
pological properties~attenuation, edges! of different regions
of the CT image.

~i! In order to separate the vertebral body from the res
the CT image, a soft tissue threshold is specified. There
two main problems in such separation:~a! the attenuation in
some regions within the trabecular bone have the same o
even lower value of attenuation as the regions outside
vertebra; ~b! the hard cortical outline of the vertebra ha
holes for blood vessels or low attenuation segments.

Our method is based on a modified algorithm of regi
growing by pixel aggregation@34#. Instead of one pixel ag-
glomeration as in the simplest case@34#, the pixels within the
circular ‘‘brush’’ are analyzed and agglomerated to the se
area. The idea of this method is as follows: if the diame
brush is set large enough in order to prevent the penetra
of the brush into the bone interiors through the gaps in
contour of the filtered vertebra image, the brush pixel agg
gation algorithm will remove all the low attenuation pixe
outside the vertebra and will preserve all of the vertebra p
els. The procedure is realized by applying a threshold filte
a rather high attenuation level to preserve mainly the cort
shell. The free area~consisting of the connected pixels who
values have been put to zero by the threshold filter! is ag-
glomerated and marked by the brush region growing te
nique. The resulting largest unmarked area is then the ve
bral body, isolated from the other parts of the CT imag
This is an effective, fully determined and autonomous alg
rithm.

~ii ! Next, another automatic procedure splits the en
vertebra into two parts: the cancellous bone and the cort
shell. An image of edges is constructed by the application
a one-pixel-edge operator@34#. The edges have a width o
one pixel, preserving the image resolution. A draft split
based on the fact that the edges inside the cortical shell
much larger than the edges inside the cancellous bone.
results in a ‘‘draft’’ trabecular area. Then, the corrected co
tour is defined as a closed loop, outside of which the atte
ation exceeds a threshold, based on the mean attenu
inside the ‘‘draft’’ trabecular area. The region inside th
contour is considered as cancellous bone, while the res
the vertebral body is related to the cortical shell; see Fig

Cancellous bone has a higher rate of metabolism and
area is affected much faster by metabolic bone diseases.
structural changes of the cancellous bone are evaluated a
next stage of our technique using the concepts of symb
dynamics and measures of complexity.

IV. SYMBOLIC DYNAMICS FOR
TWO-DIMENSIONAL DATA

At this point, the preprocessed CT image is transform
into an image composed of limited types of different sy



ols.

mbols

PRE 58 6451QUANTIFICATION OF CANCELLOUS BONE STRUCTURE . . .
FIG. 1. ~Color! Original CT and symbol-encoded images of vertebrae and their corresponding probability density of symb~a!
Fragments of 1 mm thick axial center CT images of normal~BMD 118 mg/cm3, left!, osteopenic~BMD 81 mg/cm3, middle!, and os-
teoporotic~BMD 21 mg/cm3, right! vertebrae.~b! ~Color! Corresponding segmented images of cancellous bone transformed into sy
and ~c! corresponding probability density of symbols within the cancellous bone.
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FIG. 2. ~Color! Illustration for split procedure: entire vertebra, cancellous bone, and cortical shell~from the axial slice shown in Fig. 1
left!.
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bols. Instead of representing the image by the large sequ
of numbers which sample the x-ray attenuation~4096 grada-
tions are used by our CT scanner!, the alternation of symbols
is analyzed. While a certain amount of detailed informat
is lost, but invariant, robust properties of the spatial dyna
ics and architecture are kept, e.g., regularity, symmetry,
bal organization of structure, etc. In the best case, suc
transformation generates a Markov partition. However,
most examples of natural systems we know neither the e
tence of such a partition nor their construction. Therefo
more pragmatic transformations have to be used which m
not be Markovian ones.

A main point of our method is the introduction of th
concept of symbolic dynamics@1,11,35# to analyze two-
dimensional objects such as images. Since symbolic dyn
ics was originally developed to work with multivariate b
one-dimensional time series, we have generalized it to
two-dimensional case. The approach consists of two m
stages:~i! image encoding and~ii ! assessment of the compo
sition of symbols of the encoded image.

A. Image encoding

To perform the transformation into symbols, a set
structural elements or an alphabet of symbols is introduc
From several experiments with different amounts of enc
ing symbols ranging from 3 to 7, we concluded that 5 is
optimal amount. We use a landscape terminology which
helpful for the understanding of the spatial arrangemen
pixel intensities in the images. There are three static
ments:L, lake; V, valley; H, highland; combined with two
dynamic elementsI , incline; C, cliff.

Each pixel of the image at position (x,y) represents the
corresponding value of the attenuationa(x,y). For image
encoding, two values, mean value of attenuationā and stan-
dard deviation of attenuationsa , and one additional image
of edgese(x,y) must be calculated from the pixels repr
senting the object of interest. The map of edgese(x,y) is
ce
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calculated by the application of a one-pixel-edge opera
@34# to the segmented image. Assuming that each pixe
location (x,y) has valuea0 and its eight neighbors hav
valuesa1 ,...,a8 , the one-pixel edge in the given pixel i
calculated as

e~x,y!5a02 min
i 50,...,8

~ai !. ~1!

This is a difference of the considered pixel value and a m
mal value from nine pixels: the considered pixel by itself a
its eight neighbors.

Two encoding parameters must be specified:~a! dynamic-
static limit eds which differentiates static and dynamic enco
ing; ~b! marrow thresholdam , which separate the pixels rep
resenting the bone from the pixels representing the
marrow tissue. The necessity of fixed specification of
marrow threshold stems from the fact that during osteopo
sis a significant part of the bone hard elements are repla
by marrow, but only the hard network is important to ke
the shape of the bone. Since the CT scanner is a w
calibrated device, which provides the relationship betwe
CT numbers and the linear x-ray attenuation coefficient,
thresholdam can be indeed specified.

Finally, each pixel of an object, i.e.,a(x,y)Þ0, is en-
coded by a symbol as follows.

If e(x,y),eds, the pixel is coded as a static symbol:

L if a~x,y!<am ,

V if am,a~x,y!<ā1sa ,

H if a~x,y!.ā1sa .

If e(x,y)>eds, the pixel is coded as a dynamical symbo

I if eds<e~x,y!<3eds,

C if e~x,y!.3eds.
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Several notes about the encoding procedure are impor
Our experiments have shown that simple static encod
also known in image processing as multilevel threshold
@34#, is not sufficient to describe the difference of structure
healthy and pathological bones. Therefore, a dynamical
finement of this coding procedure is essential. The dynam
symbols are independent of absolute values of attenua
they are based on the edge between the current pixel an
neighbors. Yet the encoding algorithm preserves the res
tion of the image. Thus a mixture of encoding provides
formation about both the static and dynamic features of
bone architecture. For example, according to such mixed
coding, an area coded by the symbolL, lake, is an area
where not only is the attenuation low, but the spatial dyna
ics is suppressed as well. Any occurrence of spatial dynam
is encoded by the dynamical symbolsI andC independent of
the level of the attenuation and such pixels are exclu
from the static areas. This is another advantage of the m
encoding.

Special experiments have shown that the proposed t
nique is stable for the orientation, density (21– 132 mg/cm3)
of the bone, and reasonable dispersion of noise influe
(<20 CT numbers!. It works at both high- and normal
resolution CT images. Preliminary tests have demonstra
that the technique can be successfully applied to images
tained from patients.

Typical views of encoded normal and pathologic spe
mens are shown in Fig. 1~b!. All three types of structure are
clearly distinguished on the symbol-encoded images. Imp
tant features of the structure and its spatial dynamics
visualized by such encoding. They are assessed at the
step of our technique.

B. Block of symbols

After encoding, the structural properties of the bone
represented by the composition of symbols within the i
ages. To quantify the spatial arrangement of symbols,
complexity, and local properties of symbol patterns, we
troduce the notion ‘‘block of symbols’’ of different size. I
the one-dimensional case, the signal is transformed in
series of symbols. Typical symbolic patterns within this sy
bolic string are studied using the notion ‘‘word’’: this is ju
the set of consecutive symbols of a given length@1,11#. For
a two-dimensional object, an image, the similar but gene
ized notion is a block of symbols.

The block of symbols is the connected area compo
according to some rules. Two different rules can be use
define the block of symbols.

~i! The block is defined as a square window of s
N3N built around each pixel of the image. The size of t
window could vary from 1 to the size of the entire image a
symbols of any type can be found within this window. W
call such a blocknonempty, if at least 60% of its pixels
belong to the object of interest and are nonvanishing.
a(x,y)Þ0.

~ii ! The block is the area composed only by the sa
symbol or by the same set of symbols which areconnectedto
each other. The connection could be considered in a four
eight-neighborhood system@34#. Using this definition, we
can study homogeneous areas formed either from the p
nt.
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containing only one chosen type of symbol or a given sub
of the used alphabet.

In contrast to a one-dimensional signal analysis, wh
the sequence of symbols is defined, in image analysis the
no correct way to produce thesequencefrom the two-
dimensionalblock of symbols. That is why the arrangeme
of symbols within the block can only be described eith
using a statistical approach such as symbol probability d
sity or in terms of pixel connectivity of different groups o
symbols.

C. Measures to quantify the structure
from symbol-encoded images

In order to assess different aspects of the structure f
symbol-encoded images, the probability density of symb
within each block~which is constructed in a different way
see below! must be quantified. The traditional entropy a
proaches such as that of Shannon@36# or generalized entropy
@37# are not appropriate because they solely characterize
eraged properties of probability ensembles and are unab
assess the shapes of these distributions with such a s
number of bins~five! and dramatic nonsmooth changes
the distribution shape@38# @see Fig. 1~c!#.

Several measuresMXXX are introduced to quantify differ-
ent aspects of the structural complexity and composition
the symbol-encoded images.

Three measures are based on the first definition of a b
as a square window of sizeN3N built around each pixel of
the image.

~i! To quantify the complexity of the spatial arrangeme
of symbols, the structure complexity index~SCI! is intro-
duced. First, from each nonempty block the local distribut
of symbols is calculated. Similar distributions of symbo
but obtained from the entire image, are shown in Fig. 1~c!.
To quantify such a distribution, the well known Shann
entropy @37# is not appropriate, as explained above. The
fore, we propose a measure which we call index of lo
ensemble~ILE!,

M ILE5
p~ I !1p~C!

p~L !1«
, ~2!

wherep( ) is the local probability density of the correspon
ing symbol and« is a predefined small value used to avo
division by zero. ILE represents the degree of interstratifi
tion of different levels of attenuation and is also the ra
between positive and negative structural elements of
bone. I and C are typical in areas with a developed, ric
network of trabeculae. They represent the transition from
level of attenuation to another one and often depict tran
tions from vertical to horizontal connecting trabeculae. Sy
bols H and mostlyV are found in all stages of pathologica
structural changes and do not contribute much to the dif
entiation of those changes by ILE. The symbolL represents
the soft marrow tissue located between the hard bone
ments.

Next, the analysis of all possible rectangular blocks of
bone image gives the probability density distribution of IL
pILE . The Shannon entropy@36# calculated from this distri-
bution asS(pILE)52(pILElog2(pILE) is an appropriate mea
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sure of complexity and characterizes the distribution of lo
patterns in the bone and is introduced as the structure c
plexity index ~SCI, MSCI). The higher the value of SCI, th
more complex and regionally different is the structure,
sulting in a more broad, decentralized, and more unifo
distribution of local quantities ILE.

Figure 3 shows the dependence of SCI on the wind
width N for a large range ofN. Starting fromN>11, the
number of pixels in a local window is large enough for
representative statistical description: at least 121 sym
form the histogram with a domain of five bins. Even in t
case of uniform distribution, at least 24 events will be reg
tered in each bin, which provides a rather good statistic. I
important to mention that forN>11 the window sizeN does
not affect the relation between SCI of normal, osteope
and osteoporotic structures. The moreN increases, the fewe
nonempty windows can be built, and the fewer samples
ILE are calculated. It would result in a poor estimation of t
pILE distribution. In order to obtain enough data to build t
distribution of ILE, we chose the window sizeN521. This
is a reasonable compromise between numbers of sym
within one window and numbers of ILE samples~blocks!
within the image: 441 symbols are used to construct the fi
bin histogram of each window, and the number of blocks
image is usually not less than 1.23104. Depending on the
bone size and image resolution, this chosen size of the w
dow is approximately 10– 20 % of the trabecular bo
width. This is also appropriate from the viewpoint of th
characteristic spatial scales of the vertebral architecture.

~ii ! To evaluate the orderliness and homogeneity of
trabecular net, the trabecular net index~TNI, MTNI) is intro-
duced. Symbols which represent the trabeculae areV, I , and
C ~The elementH is excluded, since it corresponds som
times to dense pathologic formations within the cancello
bone, such as osteomas!. The distribution of local trabecula
quantitiesptr5p(V)1p(I )1p(C) is calculated from smal
rectangular blocks, similar to the previous measure. Ba
on this distribution, TNI is defined as

MTNI5
median~ptr!

S~ptr!/Smax
. ~3!

FIG. 3. The dependence of the structure complexity indexMSCI

on the chosen width of the square windowN for two normal~h,
upper curves!, two osteopenic~n, middle curves!, and two os-
teoporotic cancellous bones~s, lower curves! ~from HRCT im-
ages!.
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Median andS(ptr) are the median and the Shannon entro
of the ptr distribution, S(ptr)52(ptrlog2(ptr) and Smax
5log2n is the maximal value of the entropy for a given num
ber of binsn in the distribution. In contrast to SCI,S(ptr)
characterizes only the organization of hard elements wit
the architecture.

~iii ! To assess the degree of disorder of the cancell
bone structure, from each local block of symbols the follo
ing probabilities are calculated:~a! probability of symbol
L: p(L), ~b! sum of probability of dynamical symbolsI and
C: p(I uC), ~c! sum of probability of two others static sym
bols V and H: p(VuH). The normalization condition for
these probabilities in each block is

p~L !1p~ I uC!1p~VuH !51. ~4!

Next, we construct a three-dimensional space with
system of coordinate axisp(L), p(I uC), p(VuH). Each
block of symbols is characterized by the tripl
$p(L),p(I uC),p(VuH)% and is represented by one point
such 3D probability space. The analysis of all possible n
empty blocks of the image produces a cloud of points in
3D probability space, and the 3D distribution of the triplets
calculated. The Shannon entropy quantifies the shape of
3D distribution. The structure disorder index~SDI, MSDI) is
the value of the Shannon entropy normalized by the maxi
value of the entropy for a given number of bins in the 3
distribution that can be filled by the triplets. Due to the no
malization condition~4!, only a small area of the 3D prob
ability space can be visited: partition 0.1, 0.1, 0.1 gives o
286 cubic bins fillable by the triplets. Since the number
blocks per image is;104, such a partition of the 3D prob
ability space provides a statistically meaningful descriptio

The less ordered and less regular the structure is and
larger the difference is in the structural composition in d
ferent parts of the bone, the more scattered is the cl
formed by the symbol probability triplets and the larger
the value of the SDI.

~iv! Now we generalize the 1D notion of a word com
posed only from the given symbol~s!. In 2D, this notion is
introduced using the second definition of block: a connec
area composed only by the same symbol or the same s
symbols. Regions of connected soft tissue within the bo
are represented by a connected area encoded by the sy
‘‘L.’’ Their areas are characterized by the size of theL-
blocks. AnL-block is the connected area composed by pix
encoded by the same symbol ‘‘L.’’ The measureMmax.L-block
is introduced as the largest size of theL-blocks, normalized
by the total bone area.

~v! The last measure we propose assesses the globa
semble of elements~symbols! composing the bone. The dis
tribution of symbols over the entire image is calculated@Fig.
1~c!#. Due to the reasons discussed above, the Shannon
tropy is not appropriate to quantify such a distribution. T
analog of the ILE@Eq. ~2!# but calculated from the entire
image instead of small blocks is used: the index of the glo
ensemble~IGE, M IGE) M IGE5@p(I )1p(C)#/@p(L)1«# is
the ratio between probabilities of positive and negative str
tural elements of the bone.
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D. Reproducibility and sensitivity to noise

In order to study the stability of the developed techniq
against small perturbations of the image, many statistical
periments are performed to check the reliability of the res
and to estimate their sensitivity to noise.

First, Gaussian normally distributed white noise of inte
sity sn51,2,5 CT units~which cover the interval 1.5– 7 %
of mean standard deviation of the signal! is added to the
QCT image, and next, the resulting image is quantified
the technique and measures introduced above. It is supp
that different BMD’s correspond to different types of th
structure. To test how sensitive the proposed measures a
noise for different kinds of structures, eight specimens wh
BMD’s cover the interval@20;120# mg/cm3 are taken. For
each specimen 50 runs are performed; during each run
underlying structure is slightly perturbed by a different re
ization of noise. The standard deviation of noise is taken
such a manner that it does not significantly change the t
of the underlying structure, but the fine details are smea
The chosen maximal value ofsn also corresponds to ou
estimation of the noise level which is normally present
QCT images. This means that the added white noise dou
the intensity of noise in the image in comparison to the or
nal data. It is important to note that the noise of large int
sity simply changes the structure of the image, and this le
to a severalfold shift in values of the structural measur
However, these large intensities of noise are not observe
computed tomography.

The calculations give then 50 samples of each quan
per specimen. They are used to calculate the coefficien
variationCV5sx /^x&. TheCV for different noise intensities
and for specimens with different BMD is shown in Fig.
We find that the response of symbolic measures on n
perturbation depends on the type of the underlying struc
~and on BMD!. The results of the evaluation do not diffe
significantly from one realization of noise to another. T
small CV in the noise experiments indicate that all propos
measures are a robust approach for structural quantifica

Such experiments give us a level to estimate the statis
reliability of the results. The stability of the technique rel
tive to the parameters of the numerical scheme is discu
in Secs. IV A and IV C.

V. RESULTS AND DISCUSSION

The described measures of complexity are applied to
evaluation of bone loss at different stages of osteoporo
Three groups of specimens have been analyzed: 10 nor
14 osteopenic, and 26 osteoporotic vertebrae~cf. Sec. II!.

The proposed measures of complexity provide a cl
qualitative and quantitative distinction between these th
kinds of structural organization of bone. Using the results
Sec. IV D, we have checked that this separation between
groups as well as interrelation between BMD and structu
complexity is stable against noise. The power of differen
tion of all proposed measures is many times greater t
their corresponding coefficients of variation~compare Fig. 4
with Fig. 5!. Even the maximalL-block size which has the
highestCV also has the largest spread of change. Thus
conclude that all introduced structural quantities provide
liable results.
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Characteristic types of the cancellous bone architec
and structural changes are detected and quantified by
approach as follows~Fig. 5!.

Normal bone.We found that normal bone has a structu
with highly developed spatial dynamics. Within the on
block ~one small square window! normal vertebrae are ver
inhomogeneous: small areas of low and intermediate atte

FIG. 4. The coefficient of variationCV ~in %! of different struc-
tural measures for specimens with varied bone mineral den
~BMD, in mg/cm3) at different noise levels:~a! structure complex-
ity index ~SCI!, ~b! trabecular net index~TNI!, ~c! structure disorder
index ~SDI!, ~d! size of maximalL-block, and~e! index of global
ensemble~IGE!. The results are obtained with additional Gauss
white noise of dispersionsn51, 2, and 5 CT units being added t
the QCT images. Notation of noise intensity: circles,sn51; tri-
angles,sn52; squares,sn55 CT units.
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FIG. 5. Diagrams of structural measures
complexity versus bone mineral density~BMD,
in mg/cm3) for different aspects of bone architec
ture.~a! structure complexity index~SCI!, ~b! tra-
becular net index~TNI!, ~c! structure disorder in-
dex ~SDI!, ~d! size of maximalL-block, and~e!
index of global ensemble~IGE!. A logarithmic
scale is used for vertical scales of plotsd ande.
The results are obtained from the segmented c
cellous bone of the 10 mm thick axial cente
slices. The data in panelsa, b, d, e fit an expo-

nential approximation a01a1exp@a21a3XBMD#a4

shown by steady curves. The fit in panel~c! has
been made by a polynomial of degree 3. The a
proximation coefficientsa0–a4 are obtained by
the Levenberg-Marquardt algorithm. Notation
h, normal;n, osteopenic;s, osteoporotic speci-
mens.
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ation are intensively interstratified with hard elements a
with areas of transition from one level of attenuation to a
other. The degree of such interstratification, which is rep
sented by the dynamical symbols, differs from the periphe
zone of the cancellous bone to its center and from the fr
to the back. Nevertheless, it remains at the highest level~Fig.
1!. As a result, the SCI has the maximal values for norm
cancellous bone@Fig. 5~a!#. The trabecular net has its riche
structure, connectivity and complexity: its index TNI
maximal @Fig. 5~b!#. Relatively low values of the SDI show
that the structure is rather ordered. The areas of soft tis
(L-blocks! surrounded by hard elements are very small:
size of the largestL-block is less than 2% of the total bon
area@Fig. 5~d!#. At the level of the entire cancellous bon
composition such type of architecture is represented by
highest probabilities of transitional dynamical symbolsI and
C, while the elementL has a very low probability, which is
characterized by the highest values of IGE@Fig. 5~e!#. Mea-
d
-
-

al
nt

l

ue
e

e

sures of complexity, especially SCI, TNI, and SDI demo
strate that acomplex orderedstructure is typical for norma
cancellous bone@Figs. 5~a!–5~c!#.

Osteopenic bone.Our measures of complexity exhibit tha
the structure of osteopenic bone significantly differs fro
normal bone architecture. The differences can be sum
rized in two simultaneous processes leading to two directi
of structural changes in the bone architecture.

~i! The degree of interstratification of attenuation levels
decreased due to the loss of bone. SCI is considerably lo
because the inhomogeneity of the composition within e
block is lower. In regions where the trabecular network
still present, the structure as a whole is less complex.
local trabecular quantityptr is lower, and the entropy of its
distribution is higher. It attests that the connectivity of t
trabecular net is lower. It is disconnected in many places
its hard elements are replaced by soft tissue. All these f
are captured and summarized by TNI: its value is decrea
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significantly by 20 to 40 %~see Fig. 5!. Such changes tak
place approximately in 80% of the cancellous bone area

~ii ! The rest of the bone (;20%) changes completely it
architecture. Hard elements almost disappeared and ar
placed by soft tissue. These affected spots are represente
the L-blocks. The maximal size of theL-blocks is three to
five times larger relative to the normal structure. The occ
rence of pronounced affected areas and the increasing
connection of the trabecular net are quantified by SDI as
increase of disorder within the composition. We conclu
that osteopenic bone hasdisordered structure with a signifi
cantly lower value of complexitycompared to the norma
cancellous bone.

Osteoporotic bone.All measures show that the comple
ity of osteoporotic bone structure is minimal in comparis
to normal bone architecture~Fig. 5!. Osteoporotic structura
patterns are characterized by the lowest IGE. The domina
structural element isL. The spatial dynamics are suppress
and concentrated in separated spots which correspond to
umnlike spatial structures~Fig. 1!. The value of SCI is three
times less than for normal bone structure. The column
pattern of the trabecular net leads to the highest entrop
the local trabecular quantity distributionS(ptr), the lowest
values ofptr , and results in the smallest value of TNI. Abu
dant uniform soft tissue areas are present. The maxi
L-block size increases to 102 compared to the normal bon
structure. SDI assesses the osteoporotic type of architec
by a low value of disorder. The osteoporotic bone ha
simple ordered structure.

The behavior of SCI and SDI indicates that during t
stages of bone loss there is a transition from one type of b
structure to another—from complex ordered to simple
dered structure—and such a transition happens via an
crease of disorder within the architecture. The bell-like pa
bolic shape of the SDI curve and the monotonous change
the SCI are in good agreement with the behavior of differ
measures of complexity, such as fluctuation complexity,
renormalized entropy, and the Renyi entropy, at the tra
tions in qualitative behavior, as was found for the logis
map @5,39#.

The diagrams in Fig. 5 demonstrate the interrelation
tween two aspects of the bone organization: the amoun
available material utilized for its construction~expressed in
BMD!, as well as the structural characteristics of complex
disorder, and the quality of the architecture. The results g
the first experimental and quantitative evidence of the
pothesis@25,40,41# that the complexity of the bone structu
declines rapidly with the increased loss of bone mass.
study establishes experimentally that the complexity of c
cellous bone structure is exponentially related to its den
~Fig. 5!. The correlation coefficient obtained by using t
exponential function and Spearman’s nonparametric ra
order correlation coefficient@43# between the bone minera
density and measures quantifying the structure are sum
rized in Table I. The high correlation indicates a close re
tionship between measures of bone mass and measur
structural composition. It also confirms the exponential ty
of interdependence of both properties of bone tissue.

The power of differentiation is much higher than BM
and leads to a significantly higher sensitivity to changes
the bone architecture and integrity. The exponential cur
re-
by
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of the proposed measures SCI, TNI, IGE have their stee
slopes in the transitional area between normal and osteop
vertebrae. This marks the potential of our approach whic
highly sensitive to and effective for the detection of initi
loss of bone structure and, in addition to the establish
methods of osteodensitometry@22,23#, may help to diagnose
metabolic bone diseases early. We suggest that the los
bone strength and the reduced bone integrity depend on
decreased complexity of the structure.

The complexity of the architecture derives from the co
tribution of small elements. Complexity measures seize
only parts of bone architecture, but the entirety of the tra
cular network, and therefore provide a gauge for the integ
of the bone. However, from a biomechanical standpo
bone strength is governed by material and structural pro
ties. Bone structure is by definition an adaptive result of bo
modeling~bone growth! and remodeling~bone rebuilding! in
response to its local stress environment, resulting in the s
cific sizes and shapes of different bones@42#. A net loss of
bone mass leads to an altered stress environment within
bone. Compensatory remodeling and change in architec
is the result as long as this altered architecture and the
terial properties of the bone tissue can hold the load
stress. A fracture based on osteoporosis is an expressio
the decline in bone strength. The structural complexity m
explain discrepancies observed in patients with similar l
bone densities but different bone frailties. Our findings a
also essential criteria to evaluate results from mathema
modeling of the bone. The load-bearing capacity of the
chitecture is currently being tested on the same specim
with finite element analysis. The results may enable us
determine a correlation between the complexity of the arc
tecture and its capabilities to withstand loading events.

VI. CONCLUSIONS

We generalized the technique of symbolic dynamics
analyze two-dimensional images. The procedure of tw
dimensional transformation into symbols is proposed a
measures of complexity are utilized to assess the comp
tion of symbols within the images.

This technique is applied to identify structural changes
human cancellous bone of vertebral bodies from prep
cessed CT images. Using this technique, we found that
complexity of the structure declines exponentially during t

TABLE I. The correlation coefficientr exp obtained by using the
exponential function and Spearman’s nonparametric rank-order
relation coefficientr rank between the BMD and the measures
structural complexity.

Measure r exp r rank

SCI 0.93 0.95
TNI 0.94 0.96
SDI 0.92a 20.064b

Max. L-block 20.92 20.94
IGE 0.91 0.96

aUsing polynomial of degree 3.
bRank-order correlation does not work for a such bell-like dep
dence.
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loss of bone leading to osteoporosis. It is found that norm
bone has complex ordered structure, while simple orde
architecture is typical for bones strongly affected by o
teoporosis. The transition from normal to osteoporotic arc
tecture happens via an increase of the degree of disord
the bone composition.

The technique based on symbolic dynamics is more ef
tive than the approaches which use the x-ray attenuation
ages directly. Complexity measures provide an estima
beyond calculating parameters of architectural fragme
such as the thickness, the number, the space between t
culae, the volume, or the surface of all elements. Our an
sis measures the structure in a holistic way, where the c
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plexity of the structure as a whole is emphasized instead
focusing on the calculation of single parts of the structu
composition, while the distribution, the arrangement, and
connectivity of its parts are included as well. The propos
technique is significantly sensitive to change in structure;
idea can be expanded and may well have an impact bey
biological and physical science.
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