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Quantification of cancellous bone structure using symbolic dynamics and measures of complexity
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In this study we generalize symbolic dynamics to analyze two-dimensional objects and utilize measures of
complexity to quantify the structure of symbol-encoded images. This technique is applied to study quantita-
tively the structure of human cancellous bone by analyzing computed tomography images. First, the prepro-
cessed images are transformed into symbols, applying a mixture of static and dynamic encoding. Next, the
spatial distribution of cancellous bone is evaluated using measures of complexity. New parameters are intro-
duced to quantify the cancellous bone architecture as a whole. The results exhibit that the complexity of the
structure declines more rapidly than density during the loss of bone in osteoporosis, strongly suggesting an
exponential relationship between bone mass and architecture. It is found that normal bone has complex ordered
structure, while the structure during the initial stage of bone loss is characterized by lower complexity and a
significantly higher level of disorder, which is maximal there. A strong grade of the bone loss leads again to
ordered structure, however its complexity is minimal. In addition, this method is significantly sensitive to
changes in structure of natural composite mater[88063-651X98)08911-9

PACS numbgs): 87.59.Fm, 05.45:b, 07.05.Pj, 87.59.Ls

I. INTRODUCTION leads to osteopeni@veak gradg and osteoporosigstrong
grade of the diseageOsteoporosis is defined as a disease
During the past decade the concepts of symbolic dynameharacterized by low bone mass and microarchitectural dete-
ics [1,2] and measures of complexif3—7] have been suc- rioration of bone tissue, leading to an increase of fracture
cessfully utilized to analyze models and experimental dataisk [18]. Osteopenia is world-wide the most often found
from different areas of science such as astrophy§iggeo- bone disease and is prevalent in about 54% of postmeno-
physics [9], stochastic system§l0], and medicine[11].  pausal white women in the United Stafd®]. According to
Originally, symbolic dynamics was developed to work with the World Health Organization definition, 16% of all white
multivariate but one-dimensional time series. The dramatiwomen in the U.S. age 50 years or above suffer from frac-
cally increased quality of imaging and the number of imag-tures caused by osteoporogi®]. The estimated cost of os-
ing applications in different fields of science require a toolteoporotic fractures was 13.8 billion dollars in 19p%0].
for the analysis and quantification of planditwo-  The financial and health-related costs of osteoporosis can
dimensional(2D)] and spatial(3D) architecture, its spatial only rise in future generations in every geographic region.
dynamics, and complexity. This gives the reason for the assumption that osteoporosis
In the present paper we generalize the notion of symboliwill truly become a global problem over the next half-
dynamicg[1,5,2,13 in order to analyze two-dimensional im- century[21] and that measures are urgently required to avert
ages, develop a two-dimensional procedure of transformatiothis trend.
into symbols, and utilize measures of complexity Osteoporosis is diagnosed by medical physical examina-
[11,13,14,% to assess the composition of symbols withintion, x-ray evaluation of the spine and other bones, and the
these images. The proposed technique is applied to quantitmeasurement of bone mineral density. Bone mineral density
the architecture and structural properties of biological com{BMD) measurement$22,23 are used to measure bone
posite materials. mass noninvasively and serve as a surrogate to estimate bone
Since in any object mass and structure depend on eadhracture risk[23]. Note, however, the knowledge of a low
other to build a functional formi15], methodologies to mea- bone density offers no information about the structure re-
sure structural information are needed to understand the comaining within the volume of the bone. Bone volume is de-
tribution of structure to support the form and to quantify thetermined by soft tissue marrow occupying the space between
spatial architecture, its changes, and the loss of object intedrard bone structural elemenisabeculag which define the
rity. Bone tissue is a paradigmatic example of a highly com-composition of bone architecture. This means the knowledge
plex structural entity{15]. Bone integrity is maintained by of the distribution of mass within the volume is imperative to
intertwined attributes such as strength, mass, and structueessess bone integrity and fracture 1igik,25. Density mea-
[16,17. These intrinsic factors define the fracture risk of surements provide only information about the amount of ma-
human bones in metabolic bone diseases. Loss of the bonerial, omitting its architecture. Present approaches to assess
bone structure are either invasive and evaluate only partial
aspects of the bone structy@6—2§, or, when noninvasive,
*Electronic address: petr@agnld.uni-potsdam.de apply techniques such as fracfad], texture[30], and pat-
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tern analysis[31,32 resulting in discriminatory measure- ll. IMAGE PREPROCESSING

ments with low senS|t|V|t3[32],_or only praiiles of bone sec- Before the evaluation of structural properties, the region
tions[31], or assess only projected surface patt¢@%30. o jnterest must be separated from the rest of the CT image.
We are applying symbolic dynamics and measures obyr image preprocessing technique consists of two steps:
complexity as a new noninvasive approach to assess cancefe vertebral bodies are segmented from the connective and
lous bone structure in its complex spatial distribution for thesoft tissue background, and théi) the entire vertebrae are
guantification of the architecture as a whole. Techniques o$plit into their cortical and cancellous parts. In contrast to
2D symbolic dynamics and measures of complexity are emstandard algorithm$33], which are based on geometrical
ployed to identify structural changes in human cancellousize of the vertebra and are orientation dependent, we pro-
bone of vertebral bodies from preprocessed images obtaindPS€ orientation and size independent methods based on to-

by computed tomograph¢CT) which are, crucially impor- g;)lt?]%icg_lrri)rr]?;)geét.ieiattenuation, edgeof different regions

tant, symbol-encoded by both static and dynamical ap- (i) In order to separate the vertebral body from the rest of

proaches. ; . . o
The results lead to new insights into bone’s internal struc:[he CT image, a soft tissue threshold is specified. There are

ture and provide improvements in differentiation of struc-tWO main problems in such separatida) the attenuation in
tural loss pWe have ?ound that normal bone has a compleS°Me regions within the trabecular bone have the same or an
: Pi€3ven lower value of attenuation as the regions outside the

ordered structure, while the structure during the initial Stagpvertebra; (b) the hard cortical outline of the vertebra has

of bone loss is characterized by lower complexity and a Sig'holes for blood vessels or low attenuation segments.

nificantly higher level of disorder. Strong grade' of the bong Our method is based on a modified algorithm of region

A ; \ Srowing by pixel aggregatiofi34]. Instead of one pixel ag-
is minimal. The complexity of the structure declines moreglomeration as in the simplest cd&], the pixels within the

rapidly than density during the loss of hone leading 1o OS-ircular “brush” are analyzed and agglomerated to the seed

teoporosis, strongly suggestir)g an exponential reIationsh@rea- The idea of this method is as follows: if the diameter
between bone mass and architecture. brush is set large enough in order to prevent the penetration

The da“”? are des_crlbed in Sec. II. Section 1l presents thgf the brush into the bone interiors through the gaps in the
preprocessing algorithms we developed to segment the ver-

tebral body from the connective and soft tissue backgroun ontour of the filtered vertebra image, the brush pixel aggre-

resent in a CT image. and to solit the entire vertebra into th ation algorithm will remove all the low attenuation pixels
P ge, 'SP N utside the vertebra and will preserve all of the vertebra pix-
cancellous bone and the cortical shell. Our generalization o

symbolic dynamics to work with 2D images, the encoding Is. The procedure is realized by applying a threshold filter at

procedure, and the set of measures to assess global and lo& rlather high attenuation level to preserve mainly the cortical

architecture and structural properties of symbol-encoded im- ell. The free aregonsisting of the connected pixels whose
prop Y values have been put to zero by the threshold filkerag-

e e el useness a1 (elebl omerated and marke by the rush regon growng tech-
B " ‘nique. The resulting largest unmarked area is then the verte-
bral body, isolated from the other parts of the CT image.

This is an effective, fully determined and autonomous algo-
Il. DATA rithm.

The data, axial slices of 1 mm and 10 mm thickness, were (i) Next, another automatic procedure splits the entire
acquired from nonfractured human lumbar vertebrae vertebra into two parts: the cancellous bone and the cortical
specimens using a CT scanner Somatom PIuSiSmens shell. An image of edges is constructed by the application of
AG) [Fig. 1(a)]. 50 fresh lumbar vertebrae L3 harvested from@ One-pixel-edge operat¢g4]. The edges have a width of

human cadavers were frozen 680 °C and the vertebral ©ON€ Pixel, preserving the image r_esplution. A d_raft split is
arch was cut off of each vertebra at the level of the Spinapased on the fact that the edges inside the cortical shell are

canal at the beginning of the pedicels. After thawing, vertednuch Ie}rger than the edges inside the cancellous bone. This
bral bodies were examined by high-resolution computed tof€Sults in a “draft” trabecular area. Then, the corrected con-
mography (HRCT) and quantitative computed tomography tour is defined as a closed loop, outside of which the attenu-
(QCT) applying an image matrix of 532512 pixels. HRCT ation exceeds a threshold, based on the mean attenuation
was performed transaxially applying 1 mm slice thicknesdnside the “draft” trabecular area. The region inside this
and an in-plane pixel resolution of 0.182.182 mm. De- contour is conS|de(ed as cancellous bqne, while the rest of
pending on the size of the vertebrae, continuous 28 to gihe vertebral body is related_ to the cortical shell;.see Fig. 2
slices were obtained. A transaxial center slice of 10 mm Cancellous bone has a higher rate of metabolism and this
thickness, in-plane resolution 0.328.323 mm, was ob- &/€ais affected much faster by metabolic bone diseases. The
tained an,d in conjunction with a calibration p,hantom pro_structural changes of the cancellous bone are evaluated at the
vided an evaluation of the bone mineral density. The BMDNEX! Stage of our technique using the concepts of symbolic

of the specimens ranged from 21 to 122 mgickor normal ~ dynamics and measures of complexity.
specimens BMD was defined as being above 100 migy(&m
specimenk for osteopenic between 80 and 100 mgidiid
specimenk and for osteoporotic below 80 mg/éif26 speci-
meng. 21 specimens were from femaldmean age 71 At this point, the preprocessed CT image is transformed
yearg, 29 from malegmean age 67 years into an image composed of limited types of different sym-

IV. SYMBOLIC DYNAMICS FOR
TWO-DIMENSIONAL DATA
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FIG. 1. (Color Original CT and symbol-encoded images of vertebrae and their corresponding probability density of syajbols.
Fragments of 1 mm thick axial center CT images of nor&\D 118 mg/cni, left), osteopenidBMD 81 mg/cnt, middle), and os-
teoporotic(BMD 21 mg/cnt, right) vertebrae(b) (Color) Corresponding segmented images of cancellous bone transformed into symbols
and(c) corresponding probability density of symbols within the cancellous bone.
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FIG. 2. (Color lllustration for split procedure: entire vertebra, cancellous bone, and cortical(Bbell the axial slice shown in Fig. 1,
left).

bols. Instead of representing the image by the large sequencalculated by the application of a one-pixel-edge operator
of numbers which sample the x-ray attenuatid@96 grada- [34] to the segmented image. Assuming that each pixel at
tions are used by our CT scanhehe alternation of symbols location (x,y) has valuea, and its eight neighbors have

is analyzed. While a certain amount of detailed informationvaluesa,,...,ag, the one-pixel edge in the given pixel is
is lost, but invariant, robust properties of the spatial dynam-<alculated as

ics and architecture are kept, e.g., regularity, symmetry, glo- )

bal organization of structure, etc. In the best case, such a e(x,y)=ap— min (&). @
transformation generates a Markov partition. However, in

most examples of natural systems we know neither the eXispyq js 4 difference of the considered pixel value and a mini-

tence of such a partition nor their construction. Therefore 5| \a1ye from nine pixels: the considered pixel by itself and
more pragmatic transformations have to be used which may,

not be Markovian ones S eight neighbors.
: Two encoding parameters must be specifiegfddynamic-
A main point of our method is the introduction of the ap pecifterldy

f bolic d icEl 113 | static limiteys which differentiates static and dynamic encod-
concept of symbolic ynam|_c£_;1, ' S_to analyze two- ing; (b) marrow threshold,,, which separate the pixels rep-
dimensional objects such as images. Since symbolic dynan?'esenting the bone from the pixels representing the soft

ics was originally developed to work with multivariate but marrow tissue. The necessity of fixed specification of the

one-dimensional time series, we have generalized it to thﬁwarrow threshold stems from the fact that during osteoporo-

two-dlm_er_13|onal case. The a_pproach consists of two Maldis a significant part of the bone hard elements are replaced
sf[a}gesﬂ) image encoding ani) assessment of the compo- by marrow, but only the hard network is important to keep

sition of symbols of the encoded image. the shape of the bone. Since the CT scanner is a well-
_ calibrated device, which provides the relationship between

A. Image encoding CT numbers and the linear x-ray attenuation coefficient, the

To perform the transformation into symbols, a set ofthresholda,, can be indeed specified.
structural elements or an alphabet of symbols is introduced. Finally, each pixel of an object, i.ea(x,y)#0, is en-
From several experiments with different amounts of encodcoded by a symbol as follows.
ing symbols ranging from 3 to 7, we concluded that 5 is the If &(x,y)<eys, the pixel is coded as a static symbol:
optimal amount. We use a landscape terminology which is
helpful for the understanding of the spatial arrangement of
pixel intensities in the images. There are three static ele-

L if a(x,y)<a,,

ments:L, lake;V, valley; H, highland; combined with two vV if ap<a(xy)=a+to,,
dynamic elements, incline; C, cliff. _ —
Each pixel of the image at positior,f/) represents the H if a(x,y)>a+to,.

corresponding value of the attenuatialx,y). For image
encoding, two values, mean value of attenuatiocand stan-
dard deviation of attenuatiom,, and one additional image I if egs=e(x,y)<3eys,
of edgese(x,y) must be calculated from the pixels repre-

senting the object of interest. The map of edgés,y) is C if e(x,y)>3eq.

If e(x,y)=eys, the pixel is coded as a dynamical symbol:
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Several notes about the encoding procedure are importargontaining only one chosen type of symbol or a given subset
Our experiments have shown that simple static encodingyf the used alphabet.
also known in image processing as multilevel thresholding In contrast to a one-dimensional signal analysis, where
[34], is not sufficient to describe the difference of structure inthe sequence of symbols is defined, in image analysis there is
healthy and pathological bones. Therefore, a dynamical reno correct way to produce theequencefrom the two-
finement of this coding procedure is essential. The dynamicalimensionablock of symbols. That is why the arrangement
symbols are independent of absolute values of attenuatiomf symbols within the block can only be described either
they are based on the edge between the current pixel and itsing a statistical approach such as symbol probability den-
neighbors. Yet the encoding algorithm preserves the resolwsity or in terms of pixel connectivity of different groups of
tion of the image. Thus a mixture of encoding provides in-symbols.
formation about both the static and dynamic features of the
bone architecture. For example, according to such mixed en- C. Measures to quantify the structure
coding, an area coded by the symHbal lake, is an area from symbol-encoded images
where not only is the attenuation low, but the spatial dynam-

ics is suppressed as well. Any occurrence of spatial dynamics In order to assess different aspec.t§ of the .structure from
is encoded by the dynamical symbolandC independent of symbol-encoded images, the probability density of symbols

the level of the attenuation and such pixels are excludeéﬁvithin each block(which is_ _constructed "_Ta different way,
%ee below must be quantified. The traditional entropy ap-

ferr(])(r:r:);riwne gSta“C areas. This is another advantage of the mlXeproaches such as that of Shanidf] or generalized entropy
! |1;37] are not appropriate because they solely characterize av-

Special experiments have shown that the proposed tec ' o
nique is stable for the orientation, density (21— 132 mdjcm eraged properties of probability ensembles and are unable to
! assess the shapes of these distributions with such a small

of the bone, and reasonable dispersion of noise influence o .
(<20 CT numbers It works at both high- and normal- number of bins(five) and dramatic nonsmooth changes of

) . . the distribution shapg38] [see Fig. 1c)].
resolution CT images. Preliminary tests have demonstrated Several measurdd ., are introduced to quantify differ-

that the technique can be successfully applied to images ob- ; .
tained from patients, ent aspects of the structural complexity and composition of

the symbol-encoded images.

Typical views of encoded normal and pathologic speci- ) I
mens are shown in Fig.(§). All three types of structure are Three measures are b'ased on the first definition .Of a block
as a square window of siZ¢X N built around each pixel of

clearly distinguished on the symbol-encoded images. Impor: e image
tant features of the structure and its spatial dynamics ar@ ge.

! : . i) To quantify the complexity of the spatial arrangement
visualized by such encoding. They are assessed at the ne 0 L o
step of our technique. c)><tt symbols, the structure complexity indé$Cl) is intro-

duced. First, from each nonempty block the local distribution
of symbols is calculated. Similar distributions of symbols,
but obtained from the entire image, are shown in Fig).1

To quantify such a distribution, the well known Shannon
After encoding, the structural properties of the bone aresntropy[37] is not appropriate, as explained above. There-

represented by the composition of symbols within the im-fore, we propose a measure which we call index of local
ages. To quantify the spatial arrangement of symbols, itgnsemblgILE),

complexity, and local properties of symbol patterns, we in-
troduce the notion “block of symbols” of different size. In p(l)+p(C)
the one-dimensional case, the signal is transformed into a "ol +e
series of symbols. Typical symbolic patterns within this sym-
bolic string are studied using the notion “word”: this is just
the set of consecutive symbols of a given lendtiil]. For  wherep( ) is the local probability density of the correspond-
a two-dimensional object, an image, the similar but generaling symbol ande is a predefined small value used to avoid
ized notion is a block of symbols. division by zero. ILE represents the degree of interstratifica-
The block of symbols is the connected area composetion of different levels of attenuation and is also the ratio
according to some rules. Two different rules can be used tbetween positive and negative structural elements of the
define the block of symbols. bone.l and C are typical in areas with a developed, rich
(i) The block is defined as a square window of sizenetwork of trabeculae. They represent the transition from one
NX N built around each pixel of the image. The size of thelevel of attenuation to another one and often depict transi-
window could vary from 1 to the size of the entire image andtions from vertical to horizontal connecting trabeculae. Sym-
symbols of any type can be found within this window. We bolsH and mostlyV are found in all stages of pathological
call such a blocknonempty if at least 60% of its pixels structural changes and do not contribute much to the differ-
belong to the object of interest and are nonvanishing. i.e.entiation of those changes by ILE. The symhotepresents

B. Block of symbols

@

a(x,y)#0. the soft marrow tissue located between the hard bone ele-
(i) The block is the area composed only by the samenments.
symbol or by the same set of symbols which emanectedo Next, the analysis of all possible rectangular blocks of the

each other. The connection could be considered in a four- dpone image gives the probability density distribution of ILE:
eight-neighborhood systeii84]. Using this definition, we p, . The Shannon entropy86] calculated from this distri-
can study homogeneous areas formed either from the pixdution asS(p, g) = —Zp, elod,(piLe) is an appropriate mea-
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) ) Median andS(p,) are the median and the Shannon entropy
: f of the p, distribution, S(py)=—Zpylogx(py) and Syax
=log,n is the maximal value of the entropy for a given num-
ber of binsn in the distribution. In contrast to SC§(py)
characterizes only the organization of hard elements within
the architecture.

(iii) To assess the degree of disorder of the cancellous
bone structure, from each local block of symbols the follow-
ing probabilities are calculated:(a) probability of symbol
L: p(L), (b) sum of probability of dynamical symbolsand
C: p(I|C), (c) sum of probability of two others static sym-
bols V andH: p(V|H). The normalization condition for
these probabilities in each block is

Msci

Window width N [pixels]

FIG. 3. The dependence of the structure complexity index,
on the chosen width of the square winddwfor two normal({J,
upper curveg two osteopenid/A, middle curvey and two os-

teoporotic cancellous bondg®, lower curveg (from HRCT im- ] ) )
ages. Next, we construct a three-dimensional space with a

system of coordinate axip(L), p(I|C), p(V|H). Each
sure of complexity and characterizes the distribution of locablock of symbols is characterized by the triplet
patterns in the bone and is introduced as the structure comp(L),p(1|C),p(V|H)} and is represented by one point in
plexity index(SCI, Mg¢). The higher the value of SCI, the such 3D probability space. The analysis of all possible non-
more complex and regionally different is the structure, re-empty blocks of the image produces a cloud of points in the
sulting in a more broad, decentralized, and more uniforn8D probability space, and the 3D distribution of the triplets is
distribution of local quantities ILE. calculated. The Shannon entropy quantifies the shape of this
Figure 3 shows the dependence of SCI on the windowsD distribution. The structure disorder indé&DI, Mgp,) is
width N for a large range oN. Starting fromN=11, the  the value of the Shannon entropy normalized by the maximal
number of pixels in a local window is large enough for avalue of the entropy for a given number of bins in the 3D
representative statistical description: at least 121 symbolgistribution that can be filled by the triplets. Due to the nor-
form the histogram with a domain of five bins. Even in the malization condition(4), only a small area of the 3D prob-
case of uniform distribution, at least 24 events will be regis-ability space can be visited: partition 0.1, 0.1, 0.1 gives only
tered in each bin, which provides a rather good statistic. It i$86 cubic bins fillable by the triplets. Since the number of
important to mention that fa= 11 the window sizéN does  blocks per image is-10*, such a partition of the 3D prob-
not affect the relation between SCI of normal, osteopenicapility space provides a statistically meaningful description.
and osteoporotic structures. The mérencreases, the fewer  The less ordered and less regular the structure is and the
nonempty windows can be built, and the fewer samples ofarger the difference is in the structural composition in dif-
ILE are calculated. It would result in a poor estimation of theferent parts of the bone, the more scattered is the cloud
piLe distribution. In order to obtain enough data to build theformed by the symbol probability triplets and the larger is
distribution of ILE, we chose the window si2¢=21. This the value of the SDI.
is a reasonable compromise between numbers of symbols (iv) Now we generalize the 1D notion of a word com-
within one window and numbers of ILE samplésiocks  posed only from the given symidg). In 2D, this notion is
within the image: 441 symbols are used to construct the fiveintroduced using the second definition of block: a connected
bin histogram of each window, and the number of blocks pearea composed only by the same symbol or the same set of
image is usually not less than X20*. Depending on the symbols. Regions of connected soft tissue within the bone
bone size and image resolution, this chosen size of the wirare represented by a connected area encoded by the symbol
dow is approximately 10—20 % of the trabecular bone“L.” Their areas are characterized by the size of the
width. This is also appropriate from the viewpoint of the blocks. AnL-block is the connected area composed by pixels
characteristic spatial scales of the vertebral architecture. encoded by the same symbol “L.” The measie, ., | -biock
(i) To evaluate the orderliness and homogeneity of thés introduced as the largest size of theéblocks, normalized
trabecular net, the trabecular net ind@\I, Mty,) is intro- by the total bone area.
duced. Symbols which represent the trabeculaé/ale and (v) The last measure we propose assesses the global en-
C (The elementH is excluded, since it corresponds some-semble of elementéymbol$ composing the bone. The dis-
times to dense pathologic formations within the cancellousribution of symbols over the entire image is calculafE.
bone, such as osteoma3he distribution of local trabecular 1(c)]. Due to the reasons discussed above, the Shannon en-
quantitiesp,=p(V) +p(1)+ p(C) is calculated from small tropy is not appropriate to quantify such a distribution. The
rectangular blocks, similar to the previous measure. Basednalog of the ILE[Eq. (2)] but calculated from the entire
on this distribution, TNI is defined as image instead of small blocks is used: the index of the global
. ensemble(IGE, M gg) Mige=[p(1)+p(C)]/[p(L)+e] is
— mediaripy,) the ratio between probabilities of positive and negative struc-
™I : (€©))
S(Ptr)/ Smax tural elements of the bone.

p(L)+p(I|C)+p(VIH)=1. (4
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D. Reproducibility and sensitivity to noise

In order to study the stability of the developed technique
against small perturbations of the image, many statistical ex-
periments are performed to check the reliability of the results
and to estimate their sensitivity to noise.

First, Gaussian normally distributed white noise of inten- . . : .
sity 0,=1,2,5 CT units(which cover the interval 1.5—-7 % 20 4 60 80 100 120
of mean standard deviation of the signad added to the BMD
QCT image, and next, the resulting image is quantified by
the technique and measures introduced above. It is supposed
that different BMD’s correspond to different types of the
structure. To test how sensitive the proposed measures are to
noise for different kinds of structures, eight specimens whose
BMD’s cover the interval 20;120 mg/cn? are taken. For
each specimen 50 runs are performed; during each run the
underlying structure is slightly perturbed by a different real-
ization of noise. The standard deviation of noise is taken in
such a manner that it does not significantly change the type

¢ 1

cN

20 40 60 80 100 120

6
of the underlying structure, but the fine details are smeared. 5
The chosen maximal value af, also corresponds to our T 4
estimation of the noise level which is normally present in 6“ 3
QCT images. This means that the added white noise doubles 2 2
the intensity of noise in the image in comparison to the origi- 1
nal data. It is important to note that the noise of large inten- 0

20 40 60 80 100 120

sity simply changes the structure of the image, and this leads BMD

to a severalfold shift in values of the structural measures.
However, these large intensities of noise are not observed in
computed tomography.

The calculations give then 50 samples of each quantity
per specimen. They are used to calculate the coefficient of
variationCy= o, /{x). TheCy, for different noise intensities
and for specimens with different BMD is shown in Fig. 4.
We find that the response of symbolic measures on noise
perturbation depends on the type of the underlying structure BMD
(and on BMD. The results of the evaluation do not differ
significantly from one realization of noise to another. The
small Cy, in the noise experiments indicate that all proposed
measures are a robust approach for structural quantification.

Such experiments give us a level to estimate the statistical
reliability of the results. The stability of the technique rela-
tive to the parameters of the numerical scheme is discussed
in Secs. IVA and IV C.

c vax. L-block %]

clfE

O = N W hH 0o N
N 2a  mamme e s

60 80 100 120
BMD

8
at

V. RESULTS AND DISCUSSION FIG. 4. The coefficient of variatio€y (in %) of different struc-

The described measures of complexity are applied to théiral measures for specimens with varied bone mineral density
evaluation of bone loss at different stages of osteoporosiéBMD: in mg/cr) at different noise levels@ structure complex-
Three groups of specimens have been analyzed: 10 normay index (SCI), (b)_ trabecular_ net inde&TNl), (c) structure disorder
14 osteopenic, and 26 osteoporotic vertelideSec. 1). index (SDI), (d) size of maX|maIL-quck, and(e) |nd_e_x of global '

The proposed measures of complexity provide a Cleafens.emblle(IGE)..The rgsults are obtained with qddlthnal Gaussian
qualitative and quantitative distinction between these threﬁh'te nc¥s_e Ofd'Sp?\lrs'oqnzl} 2, and 5 CT units t}e'“g i‘?‘de.d o
kinds of structural organization of bone. Using the results oane ISsC znza g:sijargtsatlo:nsoc$olljsn?tsmtensny. circles,=1; tri-
Sec. IV D, we have checked that this separation between the gles.on=2: 54 “n '
groups as well as interrelation between BMD and structural
complexity is stable against noise. The power of differentia- Characteristic types of the cancellous bone architecture
tion of all proposed measures is many times greater thaand structural changes are detected and quantified by our
their corresponding coefficients of variaticompare Fig. 4 approach as followsFig. 5).
with Fig. 5. Even the maximal-block size which has the Normal boneWe found that normal bone has a structure
highestC,, also has the largest spread of change. Thus wavith highly developed spatial dynamics. Within the one
conclude that all introduced structural quantities provide reblock (one small square windgwnormal vertebrae are very
liable results. inhomogeneous: small areas of low and intermediate attenu-
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ation are intensively interstratified with hard elements andsures of complexity, especially SCI, TNI, and SDI demon-
with areas of transition from one level of attenuation to an-strate that a&complex orderedtructure is typical for normal
other. The degree of such interstratification, which is reprecancellous bongFigs. 5a)—5(c)].

sented by the dynamical symbols, differs from the peripheral Osteopenic bon@ur measures of complexity exhibit that
zone of the cancellous bone to its center and from the fronthe structure of osteopenic bone significantly differs from
to the back. Nevertheless, it remains at the highest k&igl  normal bone architecture. The differences can be summa-
1). As a result, the SCI has the maximal values for normakized in two simultaneous processes leading to two directions
cancellous bonfFig. 5@)]. The trabecular net has its richest of structural changes in the bone architecture.

structure, connectivity and complexity: its index TNI is (i) The degree of interstratification of attenuation levels is
maximal[Fig. 5b)]. Relatively low values of the SDI show decreased due to the loss of bone. SCl is considerably lower,
that the structure is rather ordered. The areas of soft tissugecause the inhomogeneity of the composition within each
(L-blocks surrounded by hard elements are very small: theblock is lower. In regions where the trabecular network is
size of the largest-block is less than 2% of the total bone still present, the structure as a whole is less complex. The
area[Fig. 5(d)]. At the level of the entire cancellous bone local trabecular quantitp,, is lower, and the entropy of its
composition such type of architecture is represented by thdistribution is higher. It attests that the connectivity of the
highest probabilities of transitional dynamical symblosnd  trabecular net is lower. It is disconnected in many places and
C, while the element has a very low probability, which is its hard elements are replaced by soft tissue. All these facts
characterized by the highest values of I{FHg. 5(e)]. Mea- are captured and summarized by TNI: its value is decreased
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significantly by 20 to 40 %see Fig. 5. Such changes take TABLE I. The correlation coefficient,,, obtained by using the

place approximately in 80% of the cancellous bone area. exponential function and Spearman’s nonparametric rank-order cor-
(i) The rest of the bone~20%) changes completely its relation coefficient_rrank between the BMD and the measures of

architecture. Hard elements almost disappeared and are r&fuctural complexity.

placed by soft tissue. These affected spots are represented DY 1 casure

the L-blocks. The maximal size of the-blocks is three to fer Frank
five times larger relative to the normal structure. The occur- SCI 0.93 0.95
rence of pronounced affected areas and the increasing dis-TNI 0.94 0.96
connection of the trabecular net are quantified by SDI as an SDI 0.92 —-0.064
increase of disorder within the composition. We conclude Max. L-block -0.92 —0.94
that osteopenic bone hassordered structure with a signifi- IGE 0.91 0.96
cantly lower value of complexitgompared to the normal

cancellous bone. 4Using polynomial of degree 3.

Osteoporotic boneAll measures show that the complex- PRank-order correlation does not work for a such bell-like depen-
ity of osteoporotic bone structure is minimal in comparisondence.
to normal bone architectur@ig. 5. Osteoporotic structural
patterns are characterized by the lowest IGE. The dominatingf the proposed measures SCI, TNI, IGE have their steepest
structural element i&. The spatial dynamics are suppressedslopes in the transitional area between normal and osteopenic
and concentrated in separated spots which correspond to cofertebrae. This marks the potential of our approach which is
umnlike spatial structure@ig. 1). The value of SCl is three highly sensitive to and effective for the detection of initial
times less than for normal bone structure. The columnlikdoss of bone structure and, in addition to the established
pattern of the trabecular net leads to the highest entropy dhethods of osteodensitome{32,23, may help to diagnose
the local trabecular quantity distributid®(p,), the lowest ~metabolic bone diseases early. We suggest that the loss of
values ofp,;, and results in the smallest value of TNI. Abun- bone strength and the reduced bone integrity depend on the
dant uniform soft tissue areas are present. The maximalecreased complexity of the structure.
L-block size increases to 4@ompared to the normal bone ~ The complexity of the architecture derives from the con-
structure. SDI assesses the osteoporotic type of architectutdbution of small elements. Complexity measures seize not
by a low value of disorder. The osteoporotic bone has #®nly parts of bone architecture, but the entirety of the trabe-
simple ordered structure cular network, and therefore provide a gauge for the integrity
The behavior of SCI and SDI indicates that during theof the bone. However, from a biomechanical standpoint,
stages of bone loss there is a transition from one type of bon@one strength is governed by material and structural proper-
structure to another—from complex ordered to simple orties. Bone structure is by definition an adaptive result of bone
dered structure—and such a transition happens via an ifhodeling(bone growth and remodelingbone rebuildingin
crease of disorder within the architecture. The bell-like parareésponse to its local stress environment, resulting in the spe-
bolic shape of the SDI curve and the monotonous changes 6ific sizes and shapes of different boridg]. A net loss of
the SCI are in good agreement with the behavior of differenone mass leads to an altered stress environment within the
measures of complexity, such as fluctuation complexity, thdone. Compensatory remodeling and change in architecture
renormalized entropy, and the Renyi entropy, at the transilS the result as long as this altered architecture and the ma-
tions in qualitative behavior, as was found for the logisticterial properties of the bone tissue can hold the loading
map[5,39. stress. A fracture based on osteoporosis is an expression of
The diagrams in Fig. 5 demonstrate the interrelation bethe decline in bone strength. The structural complexity may
tween two aspects of the bone organization: the amount d#xplain discrepancies observed in patients with similar low
available material utilized for its constructidexpressed in bone densities but different bone frailties. Our findings are
BMD), as well as the structural characteristics of complexity /S0 essential criteria to evaluate results from mathematical
disorder, and the quality of the architecture. The results givénodeling of the bone. The load-bearing capacity of the ar-
the first experimental and quantitative evidence of the hychitecture is currently being tested on the same specimens
pothesig 25,40,4] that the complexity of the bone structure With finite element analysis. The results may enable us to
declines rapidly with the increased loss of bone mass. Oufletermine a correlation between the complexity of the archi-
study establishes experimentally that the complexity of cantecture and its capabilities to withstand loading events.
cellous bone structure is exponentially related to its density
(Fig. 5. '_I'he corr_elation coefficient obtained by using the VI. CONCLUSIONS
exponential function and Spearman’s nonparametric rank-
order correlation coefficier43] between the bone mineral We generalized the technique of symbolic dynamics to
density and measures quantifying the structure are summanalyze two-dimensional images. The procedure of two-
rized in Table I. The high correlation indicates a close rela-dimensional transformation into symbols is proposed and
tionship between measures of bone mass and measures roeasures of complexity are utilized to assess the composi-
structural composition. It also confirms the exponential typdion of symbols within the images.
of interdependence of both properties of bone tissue. This technique is applied to identify structural changes in
The power of differentiation is much higher than BMD human cancellous bone of vertebral bodies from prepro-
and leads to a significantly higher sensitivity to changes ofessed CT images. Using this technique, we found that the
the bone architecture and integrity. The exponential curvesomplexity of the structure declines exponentially during the
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loss of bone leading to osteoporosis. It is found that normaplexity of the structure as a whole is emphasized instead of

bone has complex ordered structure, while simple orderetbcusing on the calculation of single parts of the structural

architecture is typical for bones strongly affected by os-composition, while the distribution, the arrangement, and the

teoporosis. The transition from normal to osteoporotic archiconnectivity of its parts are included as well. The proposed

tecture happens via an increase of the degree of disorder téchnique is significantly sensitive to change in structure; its

the bone composition. idea can be expanded and may well have an impact beyond
The technique based on symbolic dynamics is more effecbiological and physical science.

tive than the approaches which use the x-ray attenuation im-

ages directly. Complexity measures provide an estimation ACKNOWLEDGMENTS
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